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In contrast to the classical problem of a single idealized flam@lich is described by aonlinear
reaction-diffusionequation of motiohwhich propagates at a constant burning rate, self-similar multiple scale
fields, whether fractal or nonfractal, induce anomalous rates of burning determined by the space-filling prop-
erties of the initial field. We compare the regimes inducedlimg-cuts throughthree specific geometries with
distinct space-filling characteristic&t) an algebraic spiral which has capaciyox-counting dimensionD,
>0, and fractal dimensiorl =0; (2) an exponential spiral which hd¥,=0 andH=0, and geometric ratio
R>1; (3) a fractal Cantor dust which hd¥,=H>0. The(nondimensionalburning rateUg induced by all
three geometries takes the general fodg~ F(7 %), where F is a function whose form depends on the
specific geometry{ is an exponent that contains the space-filling characteristic of the geometry, iaral
nondimensional time(1) For the algebraic spiralf(x)=1(x), and {=D,; F is continuous.(2) For the
exponential spiral,/(x)=In(x), and {=1/(R—1); F is continuous.3) For the fractal Cantor dustF"(x)
=1(x), and{=H (for the envelopg F itself is a step-like discontinuous function. Thus,g—0, or as
H—0, or asR—», then{—0 andUg—const; and a®,— 1, or asH—1, (space filling then{—1; and as
R—1 (space filling then{— <. Two numerical methods, a fundament&llerian solution to the equation of
motion and a Lagrangian model for flamelet propagation, confirm these theoretical predictions. The Lagrangian
model is based on the idealized flamelet as a “point” with finite flame thickAgss(which is determined by
the two-flamelet collision procesgpropagating with a given flame spebld . The Lagrangian model allows
simulations in parameter ranges not easily accessible by the fundamental ntmibbdas the case for the
fractal Cantor dust Interestingly, thdinear regime ofscalar diffusionin an algebraic spiral field displays the
same dependence @, as in the present reaction-diffusion case. The nonlinear regime of advection-diffusion
(Burger turbulenceshows a different dependence bn .

PACS numbe(s): 47.53+n, 68.35—p, 94.10.Lf, 82.40.Fp

I. INTRODUCTION the linear diffusion equation subject to the above initial con-
ditions. His findings were similar to those of Gurbatov and
Much interest has been excited in the scientific commu-Crighton.
nity in recent years on the impact of self-similar multiple  Other researches in this field include Bef4}, Sheet al.
scale fields, in the initial and/or boundary conditions or[5] van der Berd6], and Fleckingeet al.[7]. See also Ref.

itself, on physical processes. Many classical problems whicly5ctals.

have ;tandard solutions show dramaticajly Fjifferent physical | this paper, we focus our attention on the impact that
behavior due to these types of complex initial and/or bound-d
ary conditions.

Gurbatov and Crightofl] investigated the anomalous de-
cay of energy of fractal signals in the context of one-
dimensional “Burgers turbulence” which is described by so- ) . . e
lutions of the nonlinear Burgers’ equation. They showed thapy geometric ratioR. In contrast to the linear diffusion re-

the energy decay law for a fractal signal, consisting of argimes investigated if3], the present context of flamelets is

idealized initial field of pulses, was determined by its capacdescribed by a set of strongly nonlinear reaction-diffusion

ity D,. These ideas were further developed by Angillela andaarti_al diffv_arential equations yvith_fractal or spiral initi_al field

Vassilicos[2] who looked at the idealized one-dimensional configurations. A key question is, how is the burning rate

sequences of both alternating and nonalternating pulses fetermined byDy, H, or Rin the different fractal and spiral

fractal and spiral fields. Vassilicog] also looked at the fields? What are the similarities, if any, and the differences

decay of scalar fields subjected to molecular diffusion inwith other physical systems, such ag/ij and[3]?

fractal or spiral initial fields. These regimes are described by Flames, broadly speaking, are exothermic chemical reac-
tions with a burning rate which is a strongly increasing func-
tion of the temperaturd. In many situations, there is a

*Corresponding author. Email address: N.A.Malik@ic.ac.uk strong nonlinear coupling between the chemical reactions,

ifferent types of one-dimensional self-similar multiple scale
fields have on the burning regime of groups of flamelets. The
geometries of such fields is characterized by capacites
box-counting dimensiond,, by fractal dimensionsi, and
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the heat released and the underlying fluid flow which is ofterrespectively (Henceforth, the subscrift will refer to quan-
turbulent. A theory of chemical burning in fluid flows is far tities in the unburnt mixture, whil® will refer to quantities
from complete, but there are situations where the burningn the burnt mixture. The reduced chemical mass fraction is
regime can be simplified to the point of being analytically y=Y/Y_, whereY is the species mass fraction, ane<§
and/or numerically tractable. The simplest such case is thak1. If E is the activation energy then the nondimensional
of the flamelet regime; formally it is described by a systemactivation energy is defined §=E(Tg—Ty)/R.T3, also

of nonlinear reaction-diffusion equations in the species antknown as the Zeldovich numbeR, is the perfect gas con-
temperature variables. This system has been completebtant.

solved for asymptotically large activation energies. This is  The thermal diffusivity is defined b ,=\/pC,, where
essentially due to the fact that, in the limit of high activation ) is the thermal conductivityp is the density, an€, is the
energy, the nonlinear reaction source term is localized withispecific heat. The mass diffusivity B,,, and the Lewis
a zone which is thin compared to the total flame thicknesshumber isLe=D,/D,,. Then we are left with two coupled

this yields a unique and constant flame spegdwhich is  nonlinear reaction-diffusion partial differential equations in
directly proportional to the burning rate. See Williafi$s. x and 6, viz

It is of some interest here to contrast the physical regimes

of flamelets, which is the context of this paper, and that of ax 0 dx

the Burgers ‘turbulence’ which is the context[df] and[2], Pﬁ—a(PDmg) =—pW, i)
and also the linear scalar diffusion decay regim¢33f The

first is described by a set of reaction-diffusion equati@es 90 9 90

Egs.(2) and(3)], while the second is described by advection- p— __( pD9—> =pW, (3)
diffusion equations. Both regimes are highly nonlinear. But at - ox X

whereas in the Burgers turbulence the diffusion is acting . . ) -
constantly leading to an essentialipsteadydecaying solu-  With identical boundary conditions faf and 1,
tion with increasing correlation length scale, in the reaction-
diffusion system of flamelets the diffusion is balanced by the
reaction kinetics thus leading to an essentialigadypropa-
gating solution with constant laminar flame speed. Part of th
interest in this paper is to investigate the differences an . .
similarities in the way fractal/spiral initial conditions deter- the burnt te_mpfaratureq IS a constant which we takg to be
mine the anomalous regimes in various physical contexts. equal to unity n all of our simulations(For convenience,
The rest of the paper is organized as follows. In Sec. |11enceforth we will suppress all parameters exagpt W, .)
we review the theory for a single flamelet, and in Sec. lll we N the special case where the Lewis number is urlify,

pose the problem of the burning rate for groups of flamelets 1+ @nd if we also neglect gas expansipg=py=p=1,
in self-similar multiple scale initial conditions. In Sec. lv, the equations themselves are identical with identical bound-

we look at the two-flamelet collision process which gives®y conditions, and the problem is reduced to solving just
interaction time scales and a measure of the laminar flam@N€ nonlinear thermal reaction-diffusion equatiorgin
thickness. In Sec. V, we present theories for the burning 2

rates, first for the case of ideal zero-thickness flamelets and 99 o 0 iw (6) (4)
then for finite-thickness flamelets. In Sec. VI, we develop a dt Yoxt
Lagrangian baseffamepointmodel for flamelet propagation.

Numerical solutions of the fundamental partial differential With the same boundary conditions.

equation and the results from the flamepoint model are pre- The total consumed mas4(t) at timet in the domain is
sented and compared to the analytical solutions in Sec. VII. .

%Vgnfg?ﬁlgiec-vctln.a summary of the results and some com M (t) = le pO(X,t) dx, (5)

f=1—x=0 at x=—o; andf=1—y=1 at x=oo,

é{\/r:A/Trwr(a,Z) is the reaction rate at temperatuge
a 0(x,t), and7, = 7,(Tg) is the chemical time scale taken at

Il. SINGLE FLAMELETS and the burning ratérate of mass consumptibpUg(t) is
iven b
In the flamelet regime, the combustion is simplified to theglv y
case of the single step pre-mixed burning of a mixture of fuel dM(t)
(F) and oxidizing(O) gases which produce produ@®) gas pUg(t)= T (6)

and a quantity of heat(), viz

VeF+150—P+Q, ) In general, Eq(4) cannot be solved analytically because of
the strongly nonlinear source tenww () on the right hand

where v and vg are the stoichiometric coefficients of the side. However, it has been shown that in the limit where the
reaction. The flame propagates with subsonic speed by theduced activation energg— then W,(6) becomes in-
diffusive transport of mass and energy. The chemical kinetereasingly localized av=1; this yields astiff equation in
ics is assumed to be governed by the nonlinear Arheniusivhich heat diffuses within an extremely localized neighbor-
law with a chemical time scale , (see Ref[10]). We define  hood just behind the flame front, of thickness(Z). The
0=T—TylTg—Ty, 0=<6=<1, as the reduced temperature, released energy diffuses and preheats the unburnt gases just
where T, and Tz are the unburnt and burnt temperatures,in front where the combustion is ignited.
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FIG. 1. A sequence of reaction rate profiles(6,Z) againsté
the reduced temperature, for=1 for different Zeldovich number
(nondimensional activation enengy.
The nonlinear ternw, in Eq. (4) must take a particular
form; for anm'™" order chemical reaction, a typical reaction 10° - -
rate profile forw, is, 10 10

Z

— m
wWi(0)=(1= )™ exp(~Z(1=0))—exp(=2)}. (D) FIG. 3. Log-log plot of the laminar flame spedd, /u,_ against
. . . Z, u.=yDy/7; Dy is the thermal diffusivity,r, is the chemical
A sequence ofv, curves asZ— Is shown in Fig. 1_f0r time scale), see Eq(8). Solid lines are the asymptotic solutions for
m=1. The curves become localized &s- for all m, with  z_,« for differentm (the order of the kinetic reactionThe sym-

the peak occurring ab,,~1—m/Z—1; the peak value at hols are our computed solutions of Eg): m=1 (circles, m=2
OmaxiS W,~(M/Z)™—0 asZ—o. The region where most of (boxes.

the activity occurs is a very thin region centered around the

peak atf,,. of extentA §~0O(1/Z); thus the reaction zone U \/m

thickness scales a%~O(A /Z). The flame front advances Lo R (8
like a plane wave with aonstant and uniqutame speed) U zmtt

which is equal to the rate of burniridg . The flamelet struc- ) )

ture is steadyin the frame of reference moving with speed Whereu =yDg/7, andI'(m) is the Gamma function of
U, at the flame front. Across this region, the reduced temorder m. Figure 3 shows the plot o) /u, againstZ for
perature goes from=0 (unburn} to 6=1 (burnd. Figure 2 different ordersm=1,2 (solid lineg according to the above

shows the flame structure. aw. _ .
Using (7) for the reaction term, the exact result fdr In the rest of the paper, unless otherwise stated, all times,
— o0 is (Clavin [10]): velocities and lengths are nondimensionalized by, respec-
tively, 7., u_ and 6, = D ,7,; except in figures where we
= represents the convective flux of heat, show the entire quantities that are plotted.

=<}--=+ represents the diffusive flux of heat (conduction).

Ill. POSING THE PROBLEM OF GROUPS OF
g 0 FLAMELETS

Suppose that instead of a single flamelet, we initiate at
T - time t=0 a group (_)ff!amele'F-pairscente.red at positions
goses : aces {Xp}, n=1,... N within a given domain of interest. A
' flamelet-pair consists of two flamelets arranged back-to-back
so that the two flamelets propagate in opposite directions. At
| ™ Chemical production term certain times after release, neighboring flamelets will collide
and interact and the volume of gas between them will be
consumed; the two colliding flamelets will then vanish from

Reaction
zone

} & o] x the domain. The total number of flamelet-pairs at tite
-t _N(t) say, in the_z _domam ywll diminish by 1, vil—N-—1,
just after a collision. As time advances,—0.
FIG. 2. A sketch of the flamelet structurd, is the flame At a given timet after release the(t) flamelets can be

thickness. grouped into two sets; those that are not interacting with any
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FIG. 4. The #-profile against the distance 5, at the leading
edge of a group of flamelets from a numerical simulation in which
flamelet-pairs were released in an algebraic spiral-cut configuration.
Note how the successive flamelet collisions are at different phases
of the interaction processs(=+Dy7;.)

other flamelet and as such can be treated individually as (&)
single flamelets — there are\g(t) such single flamelets at
time t. Each one of these flamelets is localized within a sub-
domain " and centered at a poink,(t)ed" for n
=1,...2Ng; O"NO" = for n#n’. The remaining K;
=2(N—N,) flamelets are in the process of collisigpair-
wise) and they form the second group of flamelets. This 7 18 ) 10
group must be treated as a whole. Figure 4 showsethding
edgeof the #-profile from a numerical simulation at some
time after release. The leading-edge is where flamelets are a
varying phases in the collision process. In this case there are
aboutN; =10 such collision processes.

We seek an approximation to the burning rate at time
>0 after release. From Eq&) and(6), with p=1,

d " 2Ng
UB(t):a{ Jma(x,t)dx)=§l a{ Jmne(x,t)dx}ﬂ(t) (©) )
=2N (U +1(1), (9) _ E,

where the sum is over all theNg(t) noninteracting flamelets
takenindividually at timet; the contributions from the I
interacting flamelets is contained|itt). (In the integral, the
subdomaind1" must be interpreted in a Lagrangian sense
since these subdomains are located where the flamelets are atFIG. 5. The geometries that are examined in this paper. The
timet.) distribution of flamelet-pair{x,} are where the x-axis cuts the

If 1<2Ng(t)U, then this term can be neglected; we cangeometrical objectéshown as vertical lines ita) and(b)). Refering
expect this to happen wheN(t)~Ng(t)>N;. Then, the to Sec. lll: (8 The algebraic spiral(in polar coordinates r

— — - — E;

©E

burning rate is given approximately by ~(#/2m)"P; here p=05. (b) The exponential spiral,r
~exp@g@/2m); herea=0.5. Refering to Sec. V 3c) The construc-
Ug(t)=2N(t)U,_, N(t)>N;. (10)  tion of the middle third Cantor dust, witR=1/3, M=2, and thus

the fractal dimensiomd = S=In(M)/In(1/r)=0.63093.
Equation(10) is a general approximation for an arbitrary
initial set of release point§x,}. Suppose now that the set of ~ While all three geometries are multiple scaled and self-
release point$x,,} has a specific geometric configuration — similar, they also possess distinct space-filling characteris-
can an analytical expression for the burning reltg(t) be tics. The algebraic spiral, Fig.(&, is characterized by a
obtained? In this paper, we consider three contrasting geommontrivial capacity, or box-counting dimensidd,>1 and a

etries: trivial fractal dimensiorH =0; it is a smooth nonfractal ob-
(1) An algebraic spiral of the forniin polar coordinates  ject which islocally self-similar; it is singular in the sense

r~(¢/2m) P for >0, p>0; that a point moving along the spiral arm approaches the cen-
(2) An exponential spiral (in polar coordinates r ter in ever tighter fashion. The exponential spiral, Figh)5

~exp@dg/2m) for >0, a>0; has the triviaD,=1 andH = 0; its geometry is characterized

(3) A Fractal Cantor Dust on the real line. by the geometric rati® which defines the ratio of successive
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points along a line-cut through its center. It is also locally ] U —
self-similar but with a milder singularity than the exponential "
spiral. The fractal Cantor Dust, Fig(&, hasD,>0 andH

>0. A fractal object is characterized by global self-
similarity in the sense that such objects possess fine structure
and detail on arbitrarily small scales at all points — this
global self-similarity is perhaps approximate, or even statis-
tical. Mathematically they are said to have a nontrivial
Hausdorff-Besicovich(fracta) dimensionH>0 which ap-
pears as the exponent in the scaling law for such an object,

viz an H-dimensional HausdorffneasureH(F) on some set ' 2L !
FeR" scales asH(\F)=\"H(F) where \>0 is a real
number. Box-counting dimensior3,, and fractal dimen-

sions,H are indicative of the space-fillingness of curves ar'dinteraction has began. The two flamelets approach each other with

geometr_ical objects; t_he reader is referred to Falcoef total speed of &, before they interact in any wayL2is the length
for details. However, it should be noted here tBgtandH of the domain considered.

are not exclusive means of defining the space-filling proper-

ties of curves. For instance, in the example of the exponenyit, an outer length scale df=1, this means that the total
tial spiral above, clear_ly aa— 0, then the spiral curve tends | mber of points in a simulation is of the order Gf2Two
to become space filling even though bdih=0 andH  famelets propagating towards each other are initiated as
=0. : . o step-functions irp in a domainf —L,L], L>0: 6(x)=1 for

The inclusion of the exponential spiral in our set of geo-_ | <y < _ | 4| andL—l.<x=L . for some G<|~<L- and
metrical objects is of particular interest since it has not beeré,(x)zo otherw(i)se. In otr(l)er WOI’&S the two fla?nele’ts Hove
considered in the previous vyorl(s[l—S]). AIthough tisa in from the edges of the domain towards the center, see Fig.
smooth nonfractal curve, it is nevertheless multiple scaledg There is a short transition period during which the flame
self-similar and contains a singularity and it can also b&ons adjust to their smooth quasisteady profile; the initial
space filling in the sense described above. It offers a type chistance between the flameletsL2{l,)>2A, so that they

geometry 1o Investigate aqd itis |mporta}nt to see whether Rave sufficient time to attain to their steady profile before
nonfractal O,=0, H=0) field can also induce anomalous they interact in any way.

physical regime_s. . . , In Fig. 3 we also show the results from our simulations
In fact, we will be dealing with the set of points where afor m=1 (diamonds and 2 (crosses for various Z. The
line (the x-axig cuts the spiral objects through its center. Thelaminar flame speetl), /u, decreases with botm a{nd 7

geomgtrjcal propertigs of these sets of points are similar tq,q computed results approach the asymptotic law in(&q.
the original geometrical objects in the sense that the boxészﬁw. this validates our numerical scheme

counting dlmensmn of_ the points on the spwal—cutD_ﬁ . Figure 7 shows a typical time sequence of thprofiles
=D\~ 1. (Line cuts which are off the center possess similaryt ¢o|jiding flamelets as the enclosed volume is consumed:
properties except that the range of scales over which thg,ig particular case is fan=1 andZ=40.

space-filling properties are apparent is reduced. Figure 8 shows plots of the burning raths /u, against
Before we look at the general theory for groups of flame-me t/ - for m=1, andZ=20, 40 and 80. The flamelets
lets, we first look at the two-flamelet collision process. move towards each other with constant speed 2or some
time; later, the flamelets interact leading to an accelerated
IV. THE TWO-FLAMELET COLLISION PROCESS rate of burning which peaks sharply before falling almost
A. The interaction time scaleT, immediately thereafter to zero as the enclosed volume is to-

) tally consumed. Note that althoudhg peaks sharply it re-
When two flamelets are released at some distance apart,

initially they move towards each with total speedJ 2.

Some time later, the flamelets interact and consume all the 1 o e
unburnt gas between thend€1) at which point the two
flamelets vanish from the domain. The interaction of flame- %8|
lets is an unsteady nonlinear process, and a full treatment 06 L
would include physical effects such as gas expansion, insta<
bility, thermal radiation and long-range interactions. How- 54 L _
ever, within the framework of idealized flamelets, we will
ignore these effects. 0.2
Stiff nonlinear systems possess widely differing length .

scales; here, the laminar flame thicknesg is the inner , |
length scale and., the scale of the domain, is the outer ’ 6009z '
length scale. We have computed the solution of the RDE FIG. 7. The two-flamelet collision process: computegrofiles

in a one-dimensional domain using a Crank-Nicholson finiteat different times during the two-flamelet collision process. Here,
difference scheme with, typically, a density df2jrid points  we have takem=1 andZ=40. Other cases show similar qualita-
per unit length which is adequate for all of our computationstive behavior.

Unburnt

FIG. 6. The two-flamelet collision process: a sketch of the
0-profiles at the initial timet=0 and at some tim&>0 before
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FIG. 8. The two-flamelet collision process: the computed burn- ) ) )
ing rates Ug(t)/u, against the timet/r, for three cases with FIG. 9. The burning rat&Jg(t)/u, against the time/r, for m
m=1; Z=20, 40, and 80. =1, Z=20 from the fundamentalEuleriann computed solution

(solid line) and the results from the flamepoint modebtted lines

mains of the same orde@(U,), even at the peak value.  With A/6,=26 (right), 27 (centey and 29(left).

Let the time over which this interaction takes placelbe
The time taken for a flamelet to move a distance equal to on
flame thickness A, is T =A_ /U_. Then T;/T,
=T;U_/A_. The results show thak; /T <1, i.e., the colli-
sion of the two oncoming flamelets occurs on a very shor
time scale compared to the time it would take if there wer
no interaction, viz

and it can be adjusted until the above criteria is met.

e Figure 9 shows the two-flamelet collision process from
the fundamental computed solution and from the flamepoint
model for Z=20, for differentA, . The imposedlaminar
fHame speed in the flamepoint model, , is obtained from
&he fundamental solution. We see that there is indeed a
unigue value ta\| corresponding to when the collision pro-
T, cesses from the fundamental solution and from the flame-
—~0. (11)  point model vanish at the same time. Apart from the funda-
T mental solution(solid line) three cases from the flamepoint
model are shown; foA; =26, 27, and 29dotted line$. The
results are quite sensitivity to the value®f taken; only the
case withA| =27 matches the fundamental solution exactly.
For,m=1, andZ=20, 40 and 80, we have obtained, respec-

It is as if the flamelets interact and vanialmost instanta-
neouslyupon first impact.

B. The flame thicknessA, tively, A, =27, 43 and 53.
Models of flame propagation encounter the problem of
defining a precise value for the flame thicknéss. Typi- V. BURNING RATES OF GROUPS OF FLAMELETS

cally, an ad hoc value foA, is taken to be the distance
between where#=0.05 and 0.95, i.e., within 5% of the
extreme#-values. But for our theory such a definition is not ~ The results of the previous section raises the question of
precise enough to be useful since there is no reason why 5%hether it is possible that within some parameter range we
should be any better than 0.1%, 1% or 6%, etc. What wean construct a theory for the burning rate by ignoring the
need is a more physically based definition of the flame thickinteraction time all together, i.e., if we s€t=07? Let us first
ness that is both precise and unique. consider theideal flamelet limit which has zero laminar
The essential physical phenomena in flamelet propagatioflame thickness\| =0.
is the process of mass consumption, in the manner described ConsiderN, ideal zero-thicknesdlamelet-pairs released
in Sec. II. In the two-flamelet collision process, as we haveon some sefx,} within the domain of interest at time
just seen, two flamelets consume the mass enclosed betweer®. Two neighboring flamelets moving towards each other
them in a time that can be computed precisely. Suppose thatith combined speed 2, consume the enclosed mass be-
we could model flamelet propagation in a Lagrangian framdween them and vanish instantaneously upon impdgt (
as the motion of a “point” with finite thicknesd, propa- =0). Thus, a sequence of two-flamelet collisions occurs,
gating with given velocityd, — this is an idea which we and if there are R((t) flamelets in the domain at tintethen
will use in Sec. VII in the flamepoint model. Then we can the total burning rate is given approximately by Ed0).
define a flame thicknesA, as that value ofA;, when the N(t)—0 ast increases. Figure 10 illustrates the situation.
time taken for the two-flamelet collision process to com- First, we consider an initiahlgebraic spiral-cutdistribu-
pletely consume the enclosed mass as computed from thin of flamelets, with power exponept>0, x,=X;n"P for
flamepoint mode(Sec. VI)) is identical to the time for the X;>0 andn=1, ... Ny, whereNy=N(t=0)>1 is the ini-
same process as computed from the fundamental solution @&l number of flamelet-pairs released. The $gt} has
Eq. (4). A, is an input parameter in the flamepoint model space-filling properties characterized by a box-counting di-

A theory for ideal flamelets, A, =0
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Ny+1 n+2 n+l n 1

FIG. 10. A sketch of the initial configuration of idealized zero-

thickness flamelets in the computational domain illustrating the 1a- |G, 11. A sketch of the initial configuration of finite-thickness,

beling scheme for the algebraic spiral distribution of points. (A, >0), flamelets. Otherwise similar to Fig. 10.
mensionD,=1/(1+p)>0. At timet=0, a flamelet-pair is AUg(ty) dUg(t) (ap!
released centered at each locatign Strictly, U . —0 asZ — —(t/Te)" AP0, t=T,

; L At dt
—o0, SO We assume thatis large but finite so that we have N

a nonzero flame speed, . The left hand edge of the domain Yy

corre§ponds to the=(Ny+1) fIame.Iet positioned aty, - 1. =>UB(t)=UB(O)(TL) K

The right hand edge of the domain correspond to an extra

flamelet propagating in to the domain; this does not affect

the theoretical results so Io.ng Bis>1. _ o =2U,(No+1)
We label the flamelet pairs according to their initial num-

beringn; n is increasing from the right of the domain to the

left of the domain, see Fig.(&. The initial distance between In (13), we have assumed that the discrete quantity passes

the (n+1)™" and n'" oncoming flamelets ig\,,=pn~ (P2 over smoothly into the differential quantity and that the latter

for n>0(1). Forn=No, we haveAy = pNg(p+ 1 which  exists. Note that the relative change in the burning rate upon

is the smallest distance between any two flamelets initially2ch collision diminishes to 0 a¢increases, viz

these flamelets collide and vanish at tifig=Ay /2U . Up

t | Pk

AUg(t 1
to this time, there is no interaction at all and the total burning 0 Bi ) ~ N—>O as N—oo, (14
rate is exactly B(t)
Ug(t)=2U (Ng+1), O=<t<T,. (12 1. Algebraic spiral

For finite thickness flamelets, while still assuming zero-
At t=T,, the distance between the next pair of neighboringnteraction timeg(Eq. 11, the effective distance that flamelets
flamelets is nowAY _;=Ay 31— Ay,=p(p+ 1)N, P*2:  travel before interacting is reducedq,— 24, ; see Fig. 11.

and this process continues for successive collisions. Genefhus the time till then=N collision is now

ally, at the timety>T, of the n=N collision there are

2N(ty) remaining flamelets in the domain, and the distance :AN_ZAL (15)

between then=(N+1) and then=N oncoming flamelets is N 2U,

A% (t)=p(p+1)N(ty) ~®*? for N>1. . .
Thetime lagbetween then=(N+ 1) andn=N collisions The rest of the derivation follows as before, and it is easy to

is AtN:tN_tN+1:Al2\j/2UL- show that the burning rate of a set of finite thickness flame-

After each collision the burning rate decreases by as '€t with spiral-cut initial configuration is
two flamelets disappear from the domain, i.&Ug(ty)=

—2U_ . Thus, the rate of change in the burning rate between Ug()~2U (No+1), t<To (16)
successive collisions is .
T, | Pk
Ug(t)=2U (Nog+1)| =/——= , t>T,, 1
AUB(tN) 2U / N(tN)—(p+2) t>_|_ B() L( 0 ) TO+T|_ 0 ( 7)
Aty L 2U, 0

so long as N(t)>1; To=(Ay,—2A)/2U., and T,
:AL/UL .

The range o for which the above regime is valid is now
examined. The fast interaction hypothesis of Etjl) re-
N_(tN/TO)f(HDL), t=T,. quires thafT;<<T, and alsoT,<T:

=

~—(ty/To) P2+ =T,

A
In the limit that N—o we haveAty—dt—0 andty—t. T.<min ALl [N (18)
Thus, ' U /'\ U/



PRE 62 ANOMALOUS BURNING RATES OF FLAMELETS. .. 6643

If we ensure that Ay>A., e, that N(t) 3. Fractal Cantor Dust

<(pXy/A)YP*TY), then the first condition is always domi-  We consider the middle third Cantor fractal dust which is
nant. AsZ—c, U —Z~ (M1 (Eq. 8; substituted in to  the simplest type of homogeneous fractal. It can be readily
(18) this leads to constructed using a simple recurrence relation as follows

[Fig. 5(c)]: (1) let E be the unit interva] 0,1]. (2) Let E; be
T, | 2m+1) the set obtained by deleting the middle third of the line in-

7> '_L) (19 terval, so thatE;=[0,1/3]JU[2/3,1]. Now remove the
L middle third from each of these two subintervals to obtain

o E,=[0,1/3?1U[2/3,1/3]U[2/3,7/F]U[8/3?,1]. Continue
For T;=0, this simply amounts t&@>0. this procedureE, being obtained fronk,_; by removal of
Furthermore, the flamelet-pairs should not be so closely|| middle third’s of the subinterval€, consists of & inter-
positioned that successive interactions occur almost on top Qfa|s of length (1/3).
each other(this leads to an explosivelike burning rate which |y general, for simple fractals such as the Cantor Dust, the
we do not examine in this papefThis restriction means that fractal dimensionH is equal to itssimilarity dimensionS
AN>0O(A,). leading to which can be readily obtained by the following rule: if a set
is made up oM copies of itself when scaled by a factqr
thenS=In(M)/In(1/r). For the middle third Cantor Dust, we
(20 have a scaling factor of=1/3 which produce$/ =2 copies
of itself, thusH =S=1In(2)/In(3)=0.631. There are generali-
) ] zations to the Cantor Dust with<OH<1, so in the remain-
More generally, suppose thaf, scales withZ like A ger of this paper we will refer to the general case. The Cantor

+1 1/(p+2)
N<( p(p )Xl) _
AL

~Z“, then we can re-express this in termsZoas Dust scales according to the Hausdorff measure such that the
number of boxes of size needed to cover the fractal set is
Z<O(N(P*2/e) 420, (21)  9ivenby
If we take A, based on the scaling-D,/U, then A, X\H
~ZM 12 with a=m+1/2, in which case we obtairZ N(e)=|—] , (24)

<O(N2(P*+2)/m+1y "Fora=0, A, attains to a constant value
asZ—oo, i.e., A is asymptotically independent & in this
limit, and therefore there is no upper bound Znwe only
require JN< (X, /A )YP*2),

whereX is the extent of the domain which contains the frac-
tal set.

In practice, there is some uppermost generafio that
the smallest line segment has a lenggh Xr’. Consider a
set of flamelet-pairs of finite thickness, initiated on the

The burning rate of flamelets with an exponential spiral-nodes of a fractal Cantor Dust of fractal dimensidnwith
cut distribution {x,,}, in the initial condition can be derived maximum generatiod>0. The first interaction occurs at
in a similar manner{x,} is in fact a geometric progression, T,=(e;—2A,)/2U, . Thus, withX=1,

2. Exponential spiral (Geometric)

viz x,=R"Xy for n=0, ... Ny, with the geometric ratidR

=¢e? (Sec. Il). The anomalous burning rate for finite thick- ; 3

ness flamelets is Ug(t)=2U_N(ey)=2U,r -7,  0<t<T,. (29
Subsequent collisions occur tj}t=(ej—2AL)/2UL~ri/2UL

Ug()=2U (No+1), O=t<Tp (22)  for ¢;>2A; the time lag between successive collisions is
Atj=tj_1—tj~(r‘1—1)tj. The change in the burning rate
4T, | YR ?et\/\{eep collisions is given by the fractal measure at genera-
= - = = ion j, viz
2U (Np+ 1)+2UL|n(TO+TL , =T,

(23 .
AUL(t)=2U(N;_;—Nj)=~—2U (1-r")(t) "
This is valid forN>1, and forT;<A, /U, . The latter gives (26)
the same lower bound o as in Eq.(19). The restriction
AZ>0(A,) gives R—1)%,>A, . If we again assume that We observe that whereas in the algebraic-spiral case, where

A, ~Z¢, then this requireZ< ((R—1)?x,) ¥ for «#0. For ~AUg/Ug—0 asN—< (Eq. 19, in the fractal case we have
a=0, there is no restriction od. There is also no upper

bound onN since in this geometric case the distances be- AU
tween flamelets is increasing with see Fig. ). _]_B: —(1-r"=—consk 0 (27)
Note that, apart from the logarithm, the overall form of Ug

Egs.(22) and(23) is similar to Eqs(16) and(17), especially

the nondimensional time variable in the argument of)in( for anyj. Thus, the relative change in the burning rate at each
and the appearance of the geometric r&im the exponent collisions doesot converge to zero and this implies that the
of the time variable. limit
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AUL  dUg(t) 10’ , ,
lim ———~tT A > 28
CUAY dt : 8
doesnot exist. Consequently, it follows that the burning pro-
ceeds indiscretesteps such that within any time-generation
the burning rate is constant,
UjB(t)ZZULr_jH' tJ$t<tJ—1 (29) 5 -
wheret; = (&j—24,)/2U, . T -
In fact, if the continuous limit is taken in Eq18), the ST |
_solution represents the envelofigper-bounyl of the burn- § 7w
ing rate; <
t+T, |\ S -
Ul(t)=Ug(0) i>1, t>T,. (30 . 223
el=e M T ! 0 -
The parameter range for which EO) is valid can be
obtained from similar considerations as that for the
algebraic-spiral case. The requirement thatT, <1 leads
to the same lower bound dhas in Eq.(19). We also require .
€;>A,, which leads to an upper bound on the number of 0 5 10° 10° 0
generations),
t/T
J<In(ﬁ)/ln(r) (31) FIG. 12. Log-log plots of the normalized burning rates
X ' (Uglu))(t+T /To+ TL)DI; against the time/ 7, , for flamelets re-
) o leased in an algebraic-spiral field with=0.5, and thuD,=1/(1
In terms ofZ, if we assume that, ~Z¢, then this gives +p)=2/3. Three results witm=1, Z= 20, 40, and 80 are shown.
The solid lines are the theoretical curves of Ed$) and(17); the
Z<O(rJ/a) a#0. (32 dashed lines are the computed solutions of @gy. the dot-dashed
' lines are the results from the flamepoint model described in Sec. VI.
If we take =0, then there is no upper bound @n (These last two results coincide closely and can hardly be distin-

It is appropriate here to note that although the underlyinguished by eye.
geometries in the spiral cases and the fractal case are differ- o )
ent, the form of the anomalous burning regintesits enve- the flamepoint, it is not an output. Numerically, all we need

(30). domain at timet. This number is reduced by two every time

two flamepoints collide.

VI. THE FLAMEPOINT MODEL o
B. Validation

A.D ipti . . .
escription To validate the flamepoint model, results from this model

Computing the fundamental solutions for the fractal ge-must be compared to those from the fundamental solutions;
ometries presents severe problems. Even takingJestO  we will have to anticipate the results of the latter which are
generations means that the range of scales%s B0° which  described in the next section. Results from the flamepoint
must be resolved at the smallest scale. This is clearly model and the fundamental solutions, for the same effective
beyond simple techniques. We have therefore developed garameter values in spiral fields, are plotted in Figs. 12 and
Lagrangian model for flamelet propagation to compute re413. The flamepoint model results match the physical solu-
sults for the fractal case. tions exactly — it is difficult to distinguish the two sets of

The assumption oinstantaneouslamelets collision and results by eye. This adequately validates the flamepoint
mass consumption, E@ll), leads to the idea of modeling model.
flamelet propagation as a thin point, or slab, of thickn®gss The usefulness of the Lagrangian based flamepoint model
which propagates with spedd, in a Lagrangian frame of is that it is extremely fast; whereas solving the equations of
reference along the real line. Upon collision, two line- motion even in one-dimensions takes up to 24 hrs on super-
segmentgflameletg are consumed immediately and vanish computers for the cases described above, the flamepoint
from the domain. In thiflamepointmodel, a finite thickness model takes minutes on a workstation to generate the same
is given to the flamelet by the rule that when two line-results. This is important for two reasons. First, it allows us
segmentgflamelet$ come within a distance of 2, of each  to examine parameter ranges which are inaccessible to the
other they are designated as consumed and they vanish froimndamental model in one-dimensions. Secondly, it opens up
the domain. The flame speél is imposedas the motion of  the possibility of performing these kinds of simulations in
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400 ; A. Algebraic spiral distribution

The burning rates of flamelets in an algebraic spiral-cut
field was computed fom=1, p=0.5 which givesD
=1/(p+1)=2/3. Figure 12 shows the results for three cases,
Z=20, 40 and 8Qdotted lines. The figure shows the log-
log plots of (¢+T.)/(To+T.))Px(Ug/u,) againstt/r, .
Also shown on this figure are the corresponding theoretical
curves, Egs.(16) and (17) (solid lineg; these theoretical
curves overlap the computed physical solution winNgt)
>1. As N(t) decreases, the theoretical curves deviate from
the physical solutions at later times, which is clearly seen for
Z=20.

300

200

Ug/uy

B. Exponential spiral (geometric) distribution

The burning rates of flamelets in an exponential spiral-cut
] field of flamelets was computed for two casBs; 1.001 and
R=1.0015. The results are shown in Fig. 13 as log-linear
plots of Ug(t)/u, against the timé/7,. The corresponding
theoretical curves, Eq$22) and(23), are also shown on the
same plots. Again we see that the overlap with the theoretical
curves is nearly exact. In these particular cases, the theoret-
ical solution remains valid for almost the entire duration of
the burning process, unti(t) = O(10). This reflects the fact
that the exponential spiral is a milder singularity than the
FIG. 13. Log-linear plots of the burning rates/§/u ) against ~algebraic spiral.
the timet/ 7, , for flamelets released in a exponential spiral-cut field.
Results for two cases are showfw=20, R=1.001 andZ=40, R C. Fractal geometry
=1.0015. The solid lines are the theoretical curves of E2fd.and In view of the excellent agreement of the flamepoint

(23); the dashed lines are the computed solutions for (Eg.the . . :
dot-dashed lines are the results from the flamepoint model der_nodel with the computed results for the spiral fields, we can

scribed in Sec. VI(All three cases coincide closely and can hardly ;Jslef_ﬂ:gz flﬁmea(r)]lntf_m;)dgl_htco computetLhedresugs for the fra<|:-
be distinguished by eye. al field where the finite difference method needs excessively

large computational time.

Figure 14 shows the log-log plot of the burning rate
two- and three-dimensiongHowever, in more than one- yg(t)/u, against timet/r, obtained from the flamepoint
dimensions one would have to exercise caution since thghodel. We can tak&X=1, D,=1, andr,=1, which gives
interaction of flames is now curvature dependent. Furthery =1 and 6, =1. The input to the flamepoint model are
more, flame propagation at the formation of cusps is not welU, =1, andA, =0.1¢;, where we have taked=9 and so
understood yet. Within a Lagrangian framework, these ef<;=(1/3)°. (Thus, the scale separation between the smallest
fects would have to be modeled even if other physical effectand largest scales isey/=3°.) We observe a stepwise dis-
are ignored. continuous burning process, with a drop of a factor of 1/2 in
the burning rate at every collision step, so longjas4, as
predicted in Eqs(27) and(29). Also shown on Fig. 14 is the
theoretical curve for the envelope to the burning tatgt),

Eq. (30).

100

10

t/7,

VII. RESULTS

The nonlinear reaction-diffusion equatigd) with reac-
tion rate equatior(?)'was solved numerically for differgnt VIII. SUMMARY AND COMMENTS
values of the Zeldovich humbé&, for m=1. Flamelet-pairs
were released with initial spiral-cut distributions as discussed We have examined the burning regimes of groups of
in Sec. lll. A Crank-Nicholson finite difference scheme wasflamelets in self-similar multiple scale fractal and nonfractal
found to be adequate. A high density of grid points is necdields. We have found that these fields induce anomalous
essary to resolve the thin flamelet structure and the reactiorates of burning which are determined by the space-filling
zone; typically, we used a density of*Qrid points per unit  character of the initial field, whether this is defined by the

length. capacityD,, the fractal dimensioi, or the geometric ratio
6(x,t) evolves in time inside the domain of interest; the R. . '
mass fluxM (t) is the computed area under thalistribution We have contrasted three different types of geometries

within this domain as given in E@5). This area is computed Wwith distinct space-filling characteristicéin the following

by Simpson’s rule. The burning rate is given by E§)  we refer toD, rather tharD, since the context makes it clear
which we compute fronM(t) as a second order finite dif- that we are referring to the one-dimensional line-cut in the
ference. spiral cases (1) The algebraic spiral which has fractal di-
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10° 1 field, p—0 asDy—1; and in view of the restriction in Eq.
(20), this requires thaX,~ 1/p asp—0. As the exponential
spiral field becomes space-filling—1, then {—~. We
requirexo~ 1/(R—1)2.

The exponential spiral has not been considered in previ-
ous works, and the results here show that it is not just fractal-
like fields (in the sense that eithé >0 or H>0) which
can induce anomalous physical regimes; self-similar multiple
scale geometry appears to be enough. However, it is inter-
esting that the exponential spiral induces a log-regime while
the other two fractal-like geometries induce a power law in
/ 7. This reflects the milder singularity of the exponential spi-
ral.

The similarity of the burning regimes induced by the al-
gebraic spiral and the fractal fields is striking. The underly-
ing generator for the fractal field is a fixed scaling ratio
(Sec. V3 and yet it induces a burning regime whose average
] behavior is identical to the regime induced by #igebraic
spiral field rather than thexponentialspiral field; compare
(17) and(30). However, the actual burning process in a frac-
tal field occurs in stepwise fashion, Fig. 14.

The flamepoint model was developed based on the idea of
o ‘ ‘ representing flamelet propagation in a Lagrangian frame of
107 107 10 reference as a point with finite thickneSs . A, was defined
with respect to the two-flamelet collision procéssSec. VI
as a type of flamelet interaction length scale, and it can be

FIG. 14. Log-log plot of the burning rateU@/u,) against the determined uniquely. This makes the flamepoint model

timet/r, , for flamelets released in a fractal Cantor Dust fielg.is ~ Physically appealing, which is an advantage over many La-
the result from the flamepoint modall(t)/u, is the theoretical ~9rangian based models where ad hoc assumptions for the

solution for the envelope in EG30). flame thickness must be made. This leads to an accurate
model for flamelet propagation; the results of the flamepoint

mensionH =0, and capacitp,>0; (2) the exponential spi- match those of the fundamental solutions of the PEE

ral which hasH=0, D,=0 and geometric rati®R>1; (3) almost e_xactly for the two spiral cases, Figs. 12 and 13. The

the fractal Cantor dust which has=D,>0. Although the flamepoint model was the_n used to obtain results for the

specific burning regimes induced by the different geometrieéractal Cantor dust case, Fig. 14.

10

10

Ug/ur

10

10

t/7

are different in each cad&qs. (16), (17), (22), (23), (29), ' Finally, we may contrast the anomalous decaying regimes
and (30)], all of these results can, however, be brought in to'" Burgers turbulence1] for one-signed pulses, to the
a universal form, viz anomalous burning regimes which takes the general form of

equation(33) with {={D,,H}. Even though they are differ-
ent physical systems, the functional form of the energy decay
Ug(t)~F(79), (33 law in the advection-diffusion systefsee Eq. 3.15 ifi1]) is
similar to (33); however, the dependence on the capacity is
where F is a function determined by the initial fields==t  different, viz{=(1—-D)/(2—-D).
+T_/To+T_ is nondimensional time variablé; is the ex- In the simplelinear diffusive decay in 3], the functional
ponent which contains the space-filling ‘signature’ which isform for the decay of scalar variancg(t,D), is similar to
also determined by the initial field= and ¢ take the follow-  (33) but with {=(D —1)/2 for fractal or spiral fields; see Eq.

ing forms in the three cases considered: (8) of [3]. But when normalized by the classical case for a
(1) Algebraic spiral:F(-)=1(-), and{=Dy; Fis con-  single pulse D =0), we obtainS(t;D)/S(t;0)~t"P. Thisis

tinuous. the same dependence obtained for the nondimensionalized
(2) Exponential spiralF(-)=In(:), and{=1/(R—-1); F  burning rate of flameletgEgs. (13) and (17) with S(t;D)

is continuous. =Ug(t;Dy) and S(t;0)=Ug(t;D,=0)=cons), which is

(3) Fractal Cantor dustF!(-)=1(-), and{=H for the  described by a system obnlinearreaction-diffusion equa-
envelope(upper-boundl 7 itself is stepwise discontinuous. tions.

We note that as the fields become more and more sparse Thus, while it appears that the functional form of the
(Dy—0, orH—1, orR—x) thenUg—Const Thisis in- anomalous physical regimes takes the general form of Eq.
terpreted as the case of an infinite domain in which thg33), the exact dependence of the powjewn the initial field
flamelets are arranged far apart from each other so that thegeometry(characterized by its capaciti, or its fractal di-
is never any interaction, hence the burning rate is simply thenension,H, or by the geometric ratid&k), depends of the
sum of individual flamelets. When the algebraic spiral fieldspecific physical regime of interest. Nevertheless, it has been
or the fractal field become space-fillinBx—1 or H—1, shown here that the nondimensionalized burning rate in the
then {—1, and hencdlg— 7 1. For the algebraic spiral nonlinear reaction-diffusion flamelet regime, is similar to the
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nondimensionalized scalar decay rate in the linear diffusioiwo flamelets “disappear” from the domain upon collision
regime, with/=D. (Physical quantities here are nondimen-as the burning process is completed.

sionalized by the same quantities for the classical case when

D=0.) This last result is particularly interesting since the ACKNOWLEDGMENTS
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