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Anomalous burning rates of flamelets induced by self-similar multiple scale„fractal and spiral…
initial fields
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In contrast to the classical problem of a single idealized flamelet~which is described by anonlinear
reaction-diffusionequation of motion! which propagates at a constant burning rate, self-similar multiple scale
fields, whether fractal or nonfractal, induce anomalous rates of burning determined by the space-filling prop-
erties of the initial field. We compare the regimes induced by~line-cuts through! three specific geometries with
distinct space-filling characteristics:~1! an algebraic spiral which has capacity~box-counting dimension! Dk

.0, and fractal dimensionH50; ~2! an exponential spiral which hasDk50 andH50, and geometric ratio
R.1; ~3! a fractal Cantor dust which hasDk5H.0. The~nondimensional! burning rateUB induced by all
three geometries takes the general formUB;F(t2z), whereF is a function whose form depends on the
specific geometry,z is an exponent that contains the space-filling characteristic of the geometry, andt is a
nondimensional time.~1! For the algebraic spiral,F(x)51(x), and z5Dk ; F is continuous.~2! For the
exponential spiral,F(x)5 ln(x), and z51/(R21); F is continuous.~3! For the fractal Cantor dust,F u(x)
51(x), andz5H ~for the envelope!; F itself is a step-like discontinuous function. Thus, asDk→0, or as
H→0, or asR→`, thenz→0 andUB→const; and asDk→1, or asH→1, ~space filling! thenz→1; and as
R→1 ~space filling! thenz→`. Two numerical methods, a fundamental~Eulerian! solution to the equation of
motion and a Lagrangian model for flamelet propagation, confirm these theoretical predictions. The Lagrangian
model is based on the idealized flamelet as a ‘‘point’’ with finite flame thicknessDL , ~which is determined by
the two-flamelet collision process!, propagating with a given flame speedUL . The Lagrangian model allows
simulations in parameter ranges not easily accessible by the fundamental method~such as the case for the
fractal Cantor dust!. Interestingly, thelinear regime ofscalar diffusionin an algebraic spiral field displays the
same dependence onDk as in the present reaction-diffusion case. The nonlinear regime of advection-diffusion
~Burger turbulence! shows a different dependence onDk .

PACS number~s!: 47.53.1n, 68.35.2p, 94.10.Lf, 82.40.Fp
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I. INTRODUCTION

Much interest has been excited in the scientific comm
nity in recent years on the impact of self-similar multip
scale fields, in the initial and/or boundary conditions
where such geometries are generated within the fluid fl
itself, on physical processes. Many classical problems wh
have standard solutions show dramatically different phys
behavior due to these types of complex initial and/or bou
ary conditions.

Gurbatov and Crighton@1# investigated the anomalous d
cay of energy of fractal signals in the context of on
dimensional ‘‘Burgers turbulence’’ which is described by s
lutions of the nonlinear Burgers’ equation. They showed t
the energy decay law for a fractal signal, consisting of
idealized initial field of pulses, was determined by its cap
ity Dk . These ideas were further developed by Angillela a
Vassilicos@2# who looked at the idealized one-dimension
sequences of both alternating and nonalternating pulse
fractal and spiral fields. Vassilicos@3# also looked at the
decay of scalar fields subjected to molecular diffusion
fractal or spiral initial fields. These regimes are described
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the linear diffusion equation subject to the above initial co
ditions. His findings were similar to those of Gurbatov a
Crighton.

Other researches in this field include Berry@4#, Sheet al.
@5#, van der Berg@6#, and Fleckingeret al. @7#. See also Ref.
@8# for a general overview of the physics and biology
fractals.

In this paper, we focus our attention on the impact th
different types of one-dimensional self-similar multiple sca
fields have on the burning regime of groups of flamelets. T
geometries of such fields is characterized by capacities~or
box-counting dimensions! Dk , by fractal dimensionsH, and
by geometric ratiosR. In contrast to the linear diffusion re
gimes investigated in@3#, the present context of flamelets
described by a set of strongly nonlinear reaction-diffus
partial differential equations with fractal or spiral initial fiel
configurations. A key question is, how is the burning ra
determined byDk, H, or R in the different fractal and spira
fields? What are the similarities, if any, and the differenc
with other physical systems, such as in@1# and @3#?

Flames, broadly speaking, are exothermic chemical re
tions with a burning rate which is a strongly increasing fun
tion of the temperatureT. In many situations, there is
strong nonlinear coupling between the chemical reactio
6636 ©2000 The American Physical Society
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PRE 62 6637ANOMALOUS BURNING RATES OF FLAMELETS . . .
the heat released and the underlying fluid flow which is of
turbulent. A theory of chemical burning in fluid flows is fa
from complete, but there are situations where the burn
regime can be simplified to the point of being analytica
and/or numerically tractable. The simplest such case is
of the flamelet regime; formally it is described by a syste
of nonlinear reaction-diffusion equations in the species
temperature variables. This system has been comple
solved for asymptotically large activation energies. This
essentially due to the fact that, in the limit of high activati
energy, the nonlinear reaction source term is localized wit
a zone which is thin compared to the total flame thickne
this yields a unique and constant flame speedUL which is
directly proportional to the burning rate. See Williams@9#.

It is of some interest here to contrast the physical regim
of flamelets, which is the context of this paper, and that
the Burgers ‘turbulence’ which is the context of@1# and@2#,
and also the linear scalar diffusion decay regime of@3#. The
first is described by a set of reaction-diffusion equations@see
Eqs.~2! and~3!#, while the second is described by advectio
diffusion equations. Both regimes are highly nonlinear. B
whereas in the Burgers turbulence the diffusion is act
constantly leading to an essentiallyunsteadydecaying solu-
tion with increasing correlation length scale, in the reactio
diffusion system of flamelets the diffusion is balanced by
reaction kinetics thus leading to an essentiallysteadypropa-
gating solution with constant laminar flame speed. Part of
interest in this paper is to investigate the differences
similarities in the way fractal/spiral initial conditions dete
mine the anomalous regimes in various physical context

The rest of the paper is organized as follows. In Sec.
we review the theory for a single flamelet, and in Sec. III
pose the problem of the burning rate for groups of flame
in self-similar multiple scale initial conditions. In Sec. IV
we look at the two-flamelet collision process which giv
interaction time scales and a measure of the laminar fla
thickness. In Sec. V, we present theories for the burn
rates, first for the case of ideal zero-thickness flamelets
then for finite-thickness flamelets. In Sec. VI, we develop
Lagrangian basedflamepointmodel for flamelet propagation
Numerical solutions of the fundamental partial different
equation and the results from the flamepoint model are
sented and compared to the analytical solutions in Sec.
We conclude with a summary of the results and some c
ments in Sec. VIII.

II. SINGLE FLAMELETS

In the flamelet regime, the combustion is simplified to t
case of the single step pre-mixed burning of a mixture of f
~F! and oxidizing~O! gases which produce product~P! gas
and a quantity of heat (Q), viz

nFF1nOO→P1Q, ~1!

wherenF and nO are the stoichiometric coefficients of th
reaction. The flame propagates with subsonic speed by
diffusive transport of mass and energy. The chemical kin
ics is assumed to be governed by the nonlinear Arhen
law with a chemical time scalet r , ~see Ref.@10#!. We define
u5T2TU /TB2TU , 0<u<1, as the reduced temperatur
where TU and TB are the unburnt and burnt temperature
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respectively.~Henceforth, the subscriptU will refer to quan-
tities in the unburnt mixture, whileB will refer to quantities
in the burnt mixture.! The reduced chemical mass fraction
x5Y/YU where Y is the species mass fraction, and 0<x
<1. If E is the activation energy then the nondimension
activation energy is defined byZ5E(TB2TU)/RcTB

2 , also
known as the Zeldovich number.Rc is the perfect gas con
stant.

The thermal diffusivity is defined byDu5l/rCp , where
l is the thermal conductivity,r is the density, andCp is the
specific heat. The mass diffusivity isDm , and the Lewis
number isLe5Du /Dm . Then we are left with two coupled
nonlinear reaction-diffusion partial differential equations
x andu, viz

r
]x

]t
2

]

]x S rDm

]x

]x D52rWr ~2!

r
]u

]t
2

]

]x S rDu

]u

]xD5rWr ~3!

with identical boundary conditions foru and 12x,

u512x50 at x52`; andu512x51 at x5`.

Wr5A/t rwr(u,Z) is the reaction rate at temperatureu
5u(x,t), andt r5t r(TB) is the chemical time scale taken
the burnt temperature.A is a constant which we take to b
equal to unity in all of our simulations.~For convenience,
henceforth we will suppress all parameters exceptu in Wr .)

In the special case where the Lewis number is unity,Le
51, and if we also neglect gas expansion,rB5rU5r51,
the equations themselves are identical with identical bou
ary conditions, and the problem is reduced to solving j
one nonlinear thermal reaction-diffusion equation inu,

]u

]t
2Du

]2u

]x25
1

t r
wr~u! ~4!

with the same boundary conditions.
The total consumed massM (t) at time t in the domain is

M ~ t !5E
2`

1`

ru~x,t ! dx, ~5!

and the burning rate~rate of mass consumption! rUB(t) is
given by

rUB~ t !5
dM~ t !

dt
. ~6!

In general, Eq.~4! cannot be solved analytically because
the strongly nonlinear source termwr(u) on the right hand
side. However, it has been shown that in the limit where
reduced activation energyZ→` then Wr(u) becomes in-
creasingly localized atu51; this yields astiff equation in
which heat diffuses within an extremely localized neighb
hood just behind the flame front, of thicknessDL(Z). The
released energy diffuses and preheats the unburnt gase
in front where the combustion is ignited.
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6638 PRE 62NADEEM A. MALIK AND J. C. H. FUNG
The nonlinear termwr in Eq. ~4! must take a particula
form; for anmth order chemical reaction, a typical reactio
rate profile forwr is,

wr~u!5~12u!m$exp~2Z~12u!!2exp~2Z!%. ~7!

A sequence ofwr curves asZ→` is shown in Fig. 1 for
m51. The curves become localized asZ→` for all m, with
the peak occurring atumax'12m/Z→1; the peak value a
umax is wr'(m/Z)m→0 asZ→`. The region where most o
the activity occurs is a very thin region centered around
peak atumax of extentDu;O(1/Z); thus the reaction zone
thickness scales asd r;O(DL /Z). The flame front advance
like a plane wave with aconstant and uniqueflame speedUL
which is equal to the rate of burningUB . The flamelet struc-
ture is steadyin the frame of reference moving with spee
UL at the flame front. Across this region, the reduced te
perature goes fromu50 ~unburnt! to u51 ~burnt!. Figure 2
shows the flame structure.

Using ~7! for the reaction term, the exact result forZ
→` is ~Clavin @10#!:

FIG. 1. A sequence of reaction rate profiles,wr(u,Z) againstu
the reduced temperature, form51 for different Zeldovich number
~nondimensional activation energy! Z.

FIG. 2. A sketch of the flamelet structure.DL is the flame
thickness.
e

-

UL

uL
5A2G~m11!

Zm11
, ~8!

where uL5ADu /t r , and G(m) is the Gamma function of
order m. Figure 3 shows the plot ofUL /uL againstZ for
different ordersm51,2 ~solid lines! according to the above
law.

In the rest of the paper, unless otherwise stated, all tim
velocities and lengths are nondimensionalized by, resp
tively, t r , uL and dL5ADut r ; except in figures where we
show the entire quantities that are plotted.

III. POSING THE PROBLEM OF GROUPS OF
FLAMELETS

Suppose that instead of a single flamelet, we initiate
time t50 a group offlamelet-pairscentered at positions
$xn%, n51, . . . ,N within a given domain of interest. A
flamelet-pair consists of two flamelets arranged back-to-b
so that the two flamelets propagate in opposite directions
certain times after release, neighboring flamelets will coll
and interact and the volume of gas between them will
consumed; the two colliding flamelets will then vanish fro
the domain. The total number of flamelet-pairs at timet,
N(t) say, in the domain will diminish by 1, vizN→N21,
just after a collision. As time advances,N→0.

At a given timet after release the 2N(t) flamelets can be
grouped into two sets; those that are not interacting with

FIG. 3. Log-log plot of the laminar flame speed,UL /uL against
Z; uL5ADu /t r ; Du is the thermal diffusivity,t r is the chemical
time scale.!, see Eq.~8!. Solid lines are the asymptotic solutions fo
Z→` for different m ~the order of the kinetic reaction!. The sym-
bols are our computed solutions of Eq.~4!: m51 ~circles!, m52
~boxes!.
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PRE 62 6639ANOMALOUS BURNING RATES OF FLAMELETS . . .
other flamelet and as such can be treated individually
single flamelets — there are 2Ns(t) such single flamelets a
time t. Each one of these flamelets is localized within a s
domain hn and centered at a pointxn(t)Phn for n

51, . . . 2Ns ; hnùhn85B for nÞn8. The remaining 2Ni
52(N2Ns) flamelets are in the process of collision~pair-
wise! and they form the second group of flamelets. T
group must be treated as a whole. Figure 4 shows theleading
edgeof the u-profile from a numerical simulation at som
time after release. The leading-edge is where flamelets a
varying phases in the collision process. In this case there
aboutNi510 such collision processes.

We seek an approximation to the burning rate at timt
.0 after release. From Eqs.~5! and ~6!, with r51,

UB~ t !5
d

dtH E2`

`

u~x,t ! dxJ 5 (
n51

2Ns d

dtH Ehn
u~x,t ! dxJ 1I ~ t !

52Ns~ t !UL1I ~ t !, ~9!

where the sum is over all the 2Ns(t) noninteracting flamelets
taken individually at time t; the contributions from the 2Ni
interacting flamelets is contained inI (t). ~In the integral, the
subdomainshn must be interpreted in a Lagrangian sen
since these subdomains are located where the flamelets a
time t.!

If I !2Ns(t)UL then this term can be neglected; we c
expect this to happen whenN(t)'Ns(t)@Ni . Then, the
burning rate is given approximately by

UB~ t !'2N~ t !UL , N~ t !@Ni . ~10!

Equation~10! is a general approximation for an arbitra
initial set of release points$xn%. Suppose now that the set o
release points$xn% has a specific geometric configuration —
can an analytical expression for the burning rateUB(t) be
obtained? In this paper, we consider three contrasting ge
etries:

~1! An algebraic spiral of the form~in polar coordinates!
r;(f/2p)2p for f.0, p.0;

~2! An exponential spiral ~in polar coordinates! r
;exp(af/2p) for f.0, a.0;

~3! A Fractal Cantor Dust on the real line.

FIG. 4. Theu-profile against the distancex/dL at the leading
edge of a group of flamelets from a numerical simulation in wh
flamelet-pairs were released in an algebraic spiral-cut configura
Note how the successive flamelet collisions are at different ph
of the interaction process. (dL5ADut r .)
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While all three geometries are multiple scaled and s
similar, they also possess distinct space-filling characte
tics. The algebraic spiral, Fig. 5~a!, is characterized by a
nontrivial capacity, or box-counting dimension,Dk.1 and a
trivial fractal dimensionH50; it is a smooth nonfractal ob
ject which is locally self-similar; it is singular in the sens
that a point moving along the spiral arm approaches the c
ter in ever tighter fashion. The exponential spiral, Fig. 5~b!,
has the trivialDk51 andH50; its geometry is characterize
by the geometric ratioR which defines the ratio of successiv

n.
es

FIG. 5. The geometries that are examined in this paper.
distribution of flamelet-pairs$xn% are where the x-axis cuts th
geometrical objects~shown as vertical lines in~a! and~b!!. Refering
to Sec. III: ~a! The algebraic spiral,~in polar coordinates! r
;(f/2p)2p; here p50.5. ~b! The exponential spiral, r
;exp(af/2p); herea50.5. Refering to Sec. V 3:~c! The construc-
tion of the middle third Cantor dust, withR51/3, M52, and thus
the fractal dimensionH5S5 ln(M)/ln(1/r )50.63093.
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6640 PRE 62NADEEM A. MALIK AND J. C. H. FUNG
points along a line-cut through its center. It is also loca
self-similar but with a milder singularity than the exponent
spiral. The fractal Cantor Dust, Fig. 5~c!, hasDk.0 andH
.0. A fractal object is characterized by aglobal self-
similarity in the sense that such objects possess fine struc
and detail on arbitrarily small scales at all points — th
global self-similarity is perhaps approximate, or even sta
tical. Mathematically they are said to have a nontriv
Hausdorff-Besicovich~fractal! dimensionH.0 which ap-
pears as the exponent in the scaling law for such an ob
viz an H-dimensional HausdorffmeasureH(F) on some set
FPRn scales asH(lF)5lHH(F) where l.0 is a real
number. Box-counting dimensionsDk , and fractal dimen-
sions,H are indicative of the space-fillingness of curves a
geometrical objects; the reader is referred to Falconer@11#
for details. However, it should be noted here thatDk andH
are not exclusive means of defining the space-filling prop
ties of curves. For instance, in the example of the expon
tial spiral above, clearly asa→0, then the spiral curve tend
to become space filling even though bothDk50 and H
50.

The inclusion of the exponential spiral in our set of ge
metrical objects is of particular interest since it has not b
considered in the previous works~ @1–3#!. Although it is a
smooth nonfractal curve, it is nevertheless multiple sca
self-similar and contains a singularity and it can also
space filling in the sense described above. It offers a typ
geometry to investigate and it is important to see whethe
nonfractal (Dk50, H50) field can also induce anomalou
physical regimes.

In fact, we will be dealing with the set of points where
line ~the x-axis! cuts the spiral objects through its center. T
geometrical properties of these sets of points are simila
the original geometrical objects in the sense that the b
counting dimension of the points on the spiral-cut isDk8
5Dk21. ~Line cuts which are off the center possess sim
properties except that the range of scales over which
space-filling properties are apparent is reduced.!

Before we look at the general theory for groups of flam
lets, we first look at the two-flamelet collision process.

IV. THE TWO-FLAMELET COLLISION PROCESS

A. The interaction time scaleTi

When two flamelets are released at some distance a
initially they move towards each with total speed 2UL .
Some time later, the flamelets interact and consume all
unburnt gas between them (u51) at which point the two
flamelets vanish from the domain. The interaction of flam
lets is an unsteady nonlinear process, and a full treatm
would include physical effects such as gas expansion, in
bility, thermal radiation and long-range interactions. Ho
ever, within the framework of idealized flamelets, we w
ignore these effects.

Stiff nonlinear systems possess widely differing leng
scales; here, the laminar flame thicknessDL is the inner
length scale andL, the scale of the domain, is the out
length scale. We have computed the solution of the PDE~4!
in a one-dimensional domain using a Crank-Nicholson fin
difference scheme with, typically, a density of 223 grid points
per unit length which is adequate for all of our computatio
l
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With an outer length scale ofL51, this means that the tota
number of points in a simulation is of the order of 223. Two
flamelets propagating towards each other are initiated
step-functions inu in a domain@2L,L#, L.0: u(x)51 for
2L<x<2L1 l 0 andL2 l 0<x<L, for some 0, l 0!L; and
u(x)50 otherwise. In other words, the two flamelets mo
in from the edges of the domain towards the center, see
6. There is a short transition period during which the flam
fronts adjust to their smooth quasisteady profile; the ini
distance between the flamelets 2(L2 l 0)@2DL so that they
have sufficient time to attain to their steady profile befo
they interact in any way.

In Fig. 3 we also show the results from our simulatio
for m51 ~diamonds! and 2 ~crosses! for various Z. The
laminar flame speedUL /uL decreases with bothm and Z.
The computed results approach the asymptotic law in Eq.~8!
asZ→`; this validates our numerical scheme.

Figure 7 shows a typical time sequence of theu-profiles
of colliding flamelets as the enclosed volume is consum
this particular case is form51 andZ540.

Figure 8 shows plots of the burning rateUB /uL against
time t/t r for m51, andZ520, 40 and 80. The flamelet
move towards each other with constant speed 2UL for some
time; later, the flamelets interact leading to an accelera
rate of burning which peaks sharply before falling almo
immediately thereafter to zero as the enclosed volume is
tally consumed. Note that althoughUB peaks sharply it re-

FIG. 6. The two-flamelet collision process: a sketch of t
u-profiles at the initial timet50 and at some timet.0 before
interaction has began. The two flamelets approach each other
total speed of 2UL before they interact in any way. 2L is the length
of the domain considered.

FIG. 7. The two-flamelet collision process: computedu-profiles
at different times during the two-flamelet collision process. He
we have takenm51 andZ540. Other cases show similar qualita
tive behavior.
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PRE 62 6641ANOMALOUS BURNING RATES OF FLAMELETS . . .
mains of the same order,O(UL), even at the peak value.
Let the time over which this interaction takes place beTi .

The time taken for a flamelet to move a distance equal to
flame thickness DL is TL5DL /UL . Then Ti /TL
5TiUL /DL . The results show thatTi /TL!1, i.e., the colli-
sion of the two oncoming flamelets occurs on a very sh
time scale compared to the time it would take if there w
no interaction, viz

Ti

TL
'0. ~11!

It is as if the flamelets interact and vanishalmost instanta-
neouslyupon first impact.

B. The flame thickness,DL

Models of flame propagation encounter the problem
defining a precise value for the flame thicknessDL . Typi-
cally, an ad hoc value forDL is taken to be the distanc
between whereu50.05 and 0.95, i.e., within 5% of th
extremeu-values. But for our theory such a definition is n
precise enough to be useful since there is no reason why
should be any better than 0.1%, 1% or 6%, etc. What
need is a more physically based definition of the flame thi
ness that is both precise and unique.

The essential physical phenomena in flamelet propaga
is the process of mass consumption, in the manner descr
in Sec. II. In the two-flamelet collision process, as we ha
just seen, two flamelets consume the mass enclosed bet
them in a time that can be computed precisely. Suppose
we could model flamelet propagation in a Lagrangian fra
as the motion of a ‘‘point’’ with finite thicknessDL propa-
gating with given velocityUL — this is an idea which we
will use in Sec. VII in the flamepoint model. Then we ca
define a flame thicknessDL as that value ofDL when the
time taken for the two-flamelet collision process to co
pletely consume the enclosed mass as computed from
flamepoint model~Sec. VII! is identical to the time for the
same process as computed from the fundamental solutio
Eq. ~4!. DL is an input parameter in the flamepoint mod

FIG. 8. The two-flamelet collision process: the computed bu
ing rates UB(t)/uL against the timet/t r for three cases with
m51; Z520, 40, and 80.
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and it can be adjusted until the above criteria is met.
Figure 9 shows the two-flamelet collision process fro

the fundamental computed solution and from the flamepo
model for Z520, for different DL . The imposedlaminar
flame speed in the flamepoint model,UL , is obtained from
the fundamental solution. We see that there is indee
unique value toDL corresponding to when the collision pro
cesses from the fundamental solution and from the flam
point model vanish at the same time. Apart from the fund
mental solution~solid line! three cases from the flamepoin
model are shown; forDL526, 27, and 29~dotted lines!. The
results are quite sensitivity to the value ofDL taken; only the
case withDL527 matches the fundamental solution exact
For,m51, andZ520, 40 and 80, we have obtained, respe
tively, DL527, 43 and 53.

V. BURNING RATES OF GROUPS OF FLAMELETS

A theory for ideal flamelets, DLÄ0

The results of the previous section raises the question
whether it is possible that within some parameter range
can construct a theory for the burning rate by ignoring
interaction time all together, i.e., if we setTi50? Let us first
consider theideal flamelet limit which has zero lamina
flame thicknessDL50.

ConsiderN0 ideal zero-thicknessflamelet-pairs released
on some set$xn% within the domain of interest at timet
50. Two neighboring flamelets moving towards each oth
with combined speed 2UL consume the enclosed mass b
tween them and vanish instantaneously upon impactTi
50). Thus, a sequence of two-flamelet collisions occu
and if there are 2N(t) flamelets in the domain at timet then
the total burning rate is given approximately by Eq.~10!.
N(t)→0 ast increases. Figure 10 illustrates the situation

First, we consider an initialalgebraic spiral-cutdistribu-
tion of flamelets, with power exponentp.0, xn5X1n2p for
X1.0 andn51, . . . ,N0, whereN05N(t50)@1 is the ini-
tial number of flamelet-pairs released. The set$xn% has
space-filling properties characterized by a box-counting

-
FIG. 9. The burning rateUB(t)/uL against the timet/t r for m

51, Z520 from the fundamental~Eulerian! computed solution
~solid line! and the results from the flamepoint model~dotted lines!
with DL /dL526 ~right!, 27 ~center! and 29~left!.
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mensionDk851/(11p).0. At time t50, a flamelet-pair is
released centered at each locationxn . Strictly, UL→0 asZ
→`, so we assume thatZ is large but finite so that we hav
a nonzero flame speedUL . The left hand edge of the domai
corresponds to then5(N011) flamelet positioned atxN011.
The right hand edge of the domain correspond to an e
flamelet propagating in to the domain; this does not aff
the theoretical results so long asN@1.

We label the flamelet pairs according to their initial num
beringn; n is increasing from the right of the domain to th
left of the domain, see Fig. 5~a!. The initial distance between
the (n11)th and nth oncoming flamelets isDn5pn2(p11)

for n.O(1). For n5N0, we haveDN0
5pN0

2(p11) , which
is the smallest distance between any two flamelets initia
these flamelets collide and vanish at timeT05DN0

/2UL . Up
to this time, there is no interaction at all and the total burn
rate is exactly

UB~ t !52UL~N011!, 0<t,T0 . ~12!

At t5T0, the distance between the next pair of neighbor
flamelets is nowDN021

2 5DN0212DN0
5p(p11)N0

2(p12) ;

and this process continues for successive collisions. Ge
ally, at the time tN.T0 of the n5N collision there are
2N(tN) remaining flamelets in the domain, and the distan
between then5(N11) and then5N oncoming flamelets is
DN

2 (tN)5p(p11)N(tN)2(p12) for N@1.
The time lagbetween then5(N11) andn5N collisions

is DtN5tN2tN115DN
2 /2UL .

After each collision the burning rate decreases by 2UL as
two flamelets disappear from the domain, i.e.,DUB(tN)5
22UL . Thus, the rate of change in the burning rate betw
successive collisions is

DUB~ tN!

DtN
;22UL /S N~ tN!2(p12)

2UL
D , t>T0

;2~ tN /T0!2(p12)/(p11), t>T0

;2~ tN /T0!2(11Dk8), t>T0 .

In the limit that N→` we haveDtN→dt→0 and tN→t.
Thus,

FIG. 10. A sketch of the initial configuration of idealized zer
thickness flamelets in the computational domain illustrating the
beling scheme for the algebraic spiral distribution of points.
ra
t

;

g

g

er-

e

n

DUB~ tN!

DtN
→ dUB~ t !

dt
;2~ t/T0!2(11Dk8), t>T0

⇒UB~ t !5UB~0!S t

T0
D 2Dk8

52UL~N011!S t

T0
D 2Dk8

, t>T0 . ~13!

In ~13!, we have assumed that the discrete quantity pas
over smoothly into the differential quantity and that the lat
exists. Note that the relative change in the burning rate u
each collision diminishes to 0 asN increases, viz

DUB~ t !

UB~ t !
;

1

N
→0 as N→`. ~14!

1. Algebraic spiral

For finite thickness flamelets, while still assuming zer
interaction time~Eq. 11!, the effective distance that flamele
travel before interacting is reduced toDN22DL ; see Fig. 11.
Thus the time till then5N collision is now

tN5
DN22DL

2UL
. ~15!

The rest of the derivation follows as before, and it is easy
show that the burning rate of a set of finite thickness flam
lets with spiral-cut initial configuration is

UB~ t !'2UL~N011!, t<T0 ~16!

UB~ t !'2UL~N011!S t1TL

T01TL
D 2Dk8

, t.T0 , ~17!

so long as N(t)@1; T05(DN0
22DL)/2UL , and TL

5DL /UL .
The range ofZ for which the above regime is valid is now

examined. The fast interaction hypothesis of Eq.~11! re-
quires thatTi!TL and alsoTI!T0:

Ti!minH S DL

UL
D ,S DN0

UL
D J . ~18!

- FIG. 11. A sketch of the initial configuration of finite-thicknes
(DL.0), flamelets. Otherwise similar to Fig. 10.
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If we ensure that DN0
.DL , i.e., that N(t)

,(pX1 /DL)1/(p11), then the first condition is always dom
nant. AsZ→`, UL→Z2(m11)/2ul ~Eq. 8!; substituted in to
~18! this leads to

Z@S TiuL

DL
D 2/(m11)

. ~19!

For Ti50, this simply amounts toZ.0.
Furthermore, the flamelet-pairs should not be so clos

positioned that successive interactions occur almost on to
each other,~this leads to an explosivelike burning rate whi
we do not examine in this paper!. This restriction means tha
DN

2 .O(DL). leading to

N,S p~p11!X1

DL
D 1/~p12!

. ~20!

More generally, suppose thatDL scales withZ like DL
;Za, then we can re-express this in terms ofZ as

Z,O~N~p12!/a!, aÞ0. ~21!

If we take DL based on the scaling;Du /UL then DL
;Zm11/2, with a5m11/2, in which case we obtainZ
,O(N2(p12)/m11). For a50, DL attains to a constant valu
asZ→`, i.e., DL is asymptotically independent ofZ in this
limit, and therefore there is no upper bound onZ; we only
require 1!N,(X1 /DL)1/(p12).

2. Exponential spiral (Geometric)

The burning rate of flamelets with an exponential spir
cut distribution,$xn%, in the initial condition can be derived
in a similar manner.$xn% is in fact a geometric progression
viz xn5Rnx0 for n50, . . . ,N0, with the geometric ratioR
5ea ~Sec. III!. The anomalous burning rate for finite thick
ness flamelets is

UB~ t !52UL~N011!, 0<t,T0 ~22!

52UL~N011!12ULlnS t1TL

T01TL
D 21/(R21)

, t>T0 .

~23!

This is valid forN@1, and forTi!DL /UL . The latter gives
the same lower bound onZ as in Eq.~19!. The restriction
DL

2.O(DL) gives (R21)2x0.DL . If we again assume tha
DL;Za, then this requiresZ,((R21)2x0)1/a for aÞ0. For
a50, there is no restriction onZ. There is also no uppe
bound onN since in this geometric case the distances
tween flamelets is increasing withn, see Fig. 5~b!.

Note that, apart from the logarithm, the overall form
Eqs.~22! and~23! is similar to Eqs.~16! and~17!, especially
the nondimensional time variable in the argument of ln(•),
and the appearance of the geometric ratioR in the exponent
of the time variable.
ly
of

-

-

3. Fractal Cantor Dust

We consider the middle third Cantor fractal dust which
the simplest type of homogeneous fractal. It can be rea
constructed using a simple recurrence relation as follo
@Fig. 5~c!#: ~1! let E0 be the unit interval@0,1#. ~2! Let E1 be
the set obtained by deleting the middle third of the line
terval, so that E15@0,1/3#ø@2/3,1#. Now remove the
middle third from each of these two subintervals to obta
E25@0,1/32#ø@2/32,1/3#ø@2/3,7/32#ø@8/32,1#. Continue
this procedure,Ek being obtained fromEk21 by removal of
all middle third’s of the subintervals.Ek consists of 2k inter-
vals of length (1/3)k.

In general, for simple fractals such as the Cantor Dust,
fractal dimensionH is equal to itssimilarity dimensionS
which can be readily obtained by the following rule: if a s
is made up ofM copies of itself when scaled by a factorr,
thenS5 ln(M)/ln(1/r ). For the middle third Cantor Dust, w
have a scaling factor ofr 51/3 which producesM52 copies
of itself, thusH5S5 ln(2)/ln(3)50.631. There are general
zations to the Cantor Dust with 0,H,1, so in the remain-
der of this paper we will refer to the general case. The Can
Dust scales according to the Hausdorff measure such tha
number of boxes of sizee needed to cover the fractal set
given by

N~e!5S X

e D H

, ~24!

whereX is the extent of the domain which contains the fra
tal set.

In practice, there is some uppermost generationJ so that
the smallest line segment has a lengtheJ5XrJ. Consider a
set of flamelet-pairs of finite thicknessDL initiated on the
nodes of a fractal Cantor Dust of fractal dimensionH with
maximum generationJ.0. The first interaction occurs a
T05(eJ22DL)/2UL . Thus, withX51,

UB
J ~ t !52ULN~eJ!52ULr 2JH, 0<t,T0 . ~25!

Subsequent collisions occur att j5(e j22DL)/2UL'r j /2UL
for e j@2DL ; the time lag between successive collisions
Dt j5t j 212t j;(r 2121)t j . The change in the burning rat
between collisions is given by the fractal measure at gen
tion j, viz

DUB
j ~ t j !52UL~Nj 212Nj !'22UL~12r H!~ t j !

2H.
~26!

We observe that whereas in the algebraic-spiral case, w
DUB /UB→0 asN→` ~Eq. 14!, in the fractal case we hav

DUB
j

UB
j 52~12r H!52const,0 ~27!

for any j. Thus, the relative change in the burning rate at e
collisions doesnot converge to zero and this implies that th
limit
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lim
j→`

DUB
j

Dt j
→ dUB~ t !

dt
;t2(11H), j @1 ~28!

doesnot exist. Consequently, it follows that the burning pr
ceeds indiscretesteps such that within any time-generati
the burning rate is constant,

UB
j ~ t !52ULr 2 jH , t j<t,t j 21 . ~29!

wheret j5(e j22DL)/2UL .
In fact, if the continuous limit is taken in Eq.~18!, the

solution represents the envelope~upper-bound! of the burn-
ing rate;

UB
u~ t !5UB~0!S t1TL

T01TL
D 2H

j @1, t.T0 . ~30!

The parameter range for which Eq.~30! is valid can be
obtained from similar considerations as that for t
algebraic-spiral case. The requirement thatTi /TL!1 leads
to the same lower bound onZ as in Eq.~19!. We also require
eJ@DL , which leads to an upper bound on the number
generationsJ,

J! lnS DL

X D / ln~r !. ~31!

In terms ofZ, if we assume thatDL;Za, then this gives

Z!O~r J/a!, aÞ0. ~32!

If we takea50, then there is no upper bound onZ.
It is appropriate here to note that although the underly

geometries in the spiral cases and the fractal case are d
ent, the form of the anomalous burning regimes~or its enve-
lope! are strikingly similar; compare Eqs.~17!, ~23!, and
~30!.

VI. THE FLAMEPOINT MODEL

A. Description

Computing the fundamental solutions for the fractal g
ometries presents severe problems. Even taking justJ510
generations means that the range of scales is 310'105 which
must be resolved at the smallest scaleDL . This is clearly
beyond simple techniques. We have therefore develope
Lagrangian model for flamelet propagation to compute
sults for the fractal case.

The assumption ofinstantaneousflamelets collision and
mass consumption, Eq.~11!, leads to the idea of modelin
flamelet propagation as a thin point, or slab, of thicknessDL
which propagates with speedUL in a Lagrangian frame o
reference along the real line. Upon collision, two lin
segments~flamelets! are consumed immediately and vani
from the domain. In thisflamepointmodel, a finite thickness
is given to the flamelet by the rule that when two lin
segments~flamelets! come within a distance of 2DL of each
other they are designated as consumed and they vanish
the domain. The flame speedUL is imposedas the motion of
f

g
er-

-

a
-

om

the flamepoint, it is not an output. Numerically, all we ne
to do is to keep track of the number of flamelets in t
domain at timet. This number is reduced by two every tim
two flamepoints collide.

B. Validation

To validate the flamepoint model, results from this mod
must be compared to those from the fundamental solutio
we will have to anticipate the results of the latter which a
described in the next section. Results from the flamepo
model and the fundamental solutions, for the same effec
parameter values in spiral fields, are plotted in Figs. 12
13. The flamepoint model results match the physical so
tions exactly — it is difficult to distinguish the two sets o
results by eye. This adequately validates the flamep
model.

The usefulness of the Lagrangian based flamepoint mo
is that it is extremely fast; whereas solving the equations
motion even in one-dimensions takes up to 24 hrs on su
computers for the cases described above, the flamep
model takes minutes on a workstation to generate the s
results. This is important for two reasons. First, it allows
to examine parameter ranges which are inaccessible to
fundamental model in one-dimensions. Secondly, it opens
the possibility of performing these kinds of simulations

FIG. 12. Log-log plots of the normalized burning rate

(UB /uL)(t1TL /T01TL)Dk8 against the timet/t r , for flamelets re-
leased in an algebraic-spiral field withp50.5, and thusDk851/(1
1p)52/3. Three results withm51, Z520, 40, and 80 are shown
The solid lines are the theoretical curves of Eqs.~16! and~17!; the
dashed lines are the computed solutions of Eq.~4!; the dot-dashed
lines are the results from the flamepoint model described in Sec
~These last two results coincide closely and can hardly be dis
guished by eye.!
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two- and three-dimensions.~However, in more than one
dimensions one would have to exercise caution since
interaction of flames is now curvature dependent. Furth
more, flame propagation at the formation of cusps is not w
understood yet. Within a Lagrangian framework, these
fects would have to be modeled even if other physical effe
are ignored.!

VII. RESULTS

The nonlinear reaction-diffusion equation~4! with reac-
tion rate equation~7! was solved numerically for differen
values of the Zeldovich numberZ, for m51. Flamelet-pairs
were released with initial spiral-cut distributions as discus
in Sec. III. A Crank-Nicholson finite difference scheme w
found to be adequate. A high density of grid points is n
essary to resolve the thin flamelet structure and the reac
zone; typically, we used a density of 223 grid points per unit
length.

u(x,t) evolves in time inside the domain of interest; t
mass fluxM (t) is the computed area under theu distribution
within this domain as given in Eq.~5!. This area is computed
by Simpson’s rule. The burning rate is given by Eq.~6!
which we compute fromM (t) as a second order finite dif
ference.

FIG. 13. Log-linear plots of the burning rates (UB /uL) against
the timet/t r , for flamelets released in a exponential spiral-cut fie
Results for two cases are shown,Z520, R51.001 andZ540, R
51.0015. The solid lines are the theoretical curves of Eqs.~22! and
~23!; the dashed lines are the computed solutions for Eq.~4!; the
dot-dashed lines are the results from the flamepoint model
scribed in Sec. VI.~All three cases coincide closely and can hard
be distinguished by eye.!
e
r-
ll
f-
ts
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-
on

A. Algebraic spiral distribution

The burning rates of flamelets in an algebraic spiral-
field was computed form51, p50.5 which gives Dk8
51/(p11)52/3. Figure 12 shows the results for three cas
Z520, 40 and 80~dotted lines!. The figure shows the log

log plots of ((t1TL)/(T01TL))Dk8(UB /uL) against t/t r .
Also shown on this figure are the corresponding theoret
curves, Eqs.~16! and ~17! ~solid lines!; these theoretica
curves overlap the computed physical solution whenN(t)
@1. As N(t) decreases, the theoretical curves deviate fr
the physical solutions at later times, which is clearly seen
Z520.

B. Exponential spiral „geometric… distribution

The burning rates of flamelets in an exponential spiral-
field of flamelets was computed for two cases,R51.001 and
R51.0015. The results are shown in Fig. 13 as log-line
plots of UB(t)/uL against the timet/t r . The corresponding
theoretical curves, Eqs.~22! and~23!, are also shown on the
same plots. Again we see that the overlap with the theoret
curves is nearly exact. In these particular cases, the the
ical solution remains valid for almost the entire duration
the burning process, untilN(t)5O(10). This reflects the fac
that the exponential spiral is a milder singularity than t
algebraic spiral.

C. Fractal geometry

In view of the excellent agreement of the flamepo
model with the computed results for the spiral fields, we c
use the flamepoint model to compute the results for the fr
tal field where the finite difference method needs excessiv
large computational time.

Figure 14 shows the log-log plot of the burning ra
UB(t)/uL against timet/t r obtained from the flamepoin
model. We can takeX51, Du51, andt r51, which gives
uL51 and dL51. The input to the flamepoint model ar
UL51, andDL50.1eJ , where we have takenJ59 and so
eJ5(1/3)9. ~Thus, the scale separation between the smal
and largest scales is 1/eJ539.) We observe a stepwise dis
continuous burning process, with a drop of a factor of 1/2
the burning rate at every collision step, so long asj .4, as
predicted in Eqs.~27! and~29!. Also shown on Fig. 14 is the
theoretical curve for the envelope to the burning rateUB

u(t),
Eq. ~30!.

VIII. SUMMARY AND COMMENTS

We have examined the burning regimes of groups
flamelets in self-similar multiple scale fractal and nonfrac
fields. We have found that these fields induce anomal
rates of burning which are determined by the space-fill
character of the initial field, whether this is defined by t
capacityDk , the fractal dimensionH, or the geometric ratio
R.

We have contrasted three different types of geomet
with distinct space-filling characteristics.~In the following
we refer toDk rather thanDk8 since the context makes it clea
that we are referring to the one-dimensional line-cut in
spiral cases!: ~1! The algebraic spiral which has fractal d

.
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mensionH50, and capacityDk.0; ~2! the exponential spi-
ral which hasH50, Dk50 and geometric ratioR.1; ~3!
the fractal Cantor dust which hasH5Dk.0. Although the
specific burning regimes induced by the different geomet
are different in each case@Eqs. ~16!, ~17!, ~22!, ~23!, ~29!,
and~30!#, all of these results can, however, be brought in
a universal form, viz

UB~ t !;F~t2z!, ~33!

whereF is a function determined by the initial field;t5t
1TL /T01TL is nondimensional time variable;z is the ex-
ponent which contains the space-filling ‘signature’ which
also determined by the initial field.F andz take the follow-
ing forms in the three cases considered:

~1! Algebraic spiral:F(•)[1(•), andz5Dk ; F is con-
tinuous.

~2! Exponential spiral:F(•)[ ln(•), andz51/(R21); F
is continuous.

~3! Fractal Cantor dust:F u(•)[1(•), andz5H for the
envelope~upper-bound!. F itself is stepwise discontinuous

We note that as the fields become more and more sp
(Dk→0, or H→1, or R→`) thenUB→Const. This is in-
terpreted as the case of an infinite domain in which
flamelets are arranged far apart from each other so that t
is never any interaction, hence the burning rate is simply
sum of individual flamelets. When the algebraic spiral fie
or the fractal field become space-filling,DK→1 or H→1,
then z→1, and henceUB→t21. For the algebraic spira

FIG. 14. Log-log plot of the burning rate (UB /uL) against the
time t/t r , for flamelets released in a fractal Cantor Dust field.UB is
the result from the flamepoint model.UB

u(t)/uL is the theoretical
solution for the envelope in Eq.~30!.
s

o

se

e
re
e

field, p→0 asDk→1; and in view of the restriction in Eq
~20!, this requires thatX1;1/p asp→0. As the exponential
spiral field becomes space-filling,R→1, then z→`. We
requirex0;1/(R21)2.

The exponential spiral has not been considered in pr
ous works, and the results here show that it is not just frac
like fields ~in the sense that eitherDK.0 or H.0) which
can induce anomalous physical regimes; self-similar multi
scale geometry appears to be enough. However, it is in
esting that the exponential spiral induces a log-regime w
the other two fractal-like geometries induce a power law
t. This reflects the milder singularity of the exponential s
ral.

The similarity of the burning regimes induced by the a
gebraic spiral and the fractal fields is striking. The under
ing generator for the fractal field is a fixed scaling ratior
~Sec. V 3! and yet it induces a burning regime whose avera
behavior is identical to the regime induced by thealgebraic
spiral field rather than theexponentialspiral field; compare
~17! and~30!. However, the actual burning process in a fra
tal field occurs in stepwise fashion, Fig. 14.

The flamepoint model was developed based on the ide
representing flamelet propagation in a Lagrangian frame
reference as a point with finite thicknessDL . DL was defined
with respect to the two-flamelet collision process~in Sec. VI!
as a type of flamelet interaction length scale, and it can
determined uniquely. This makes the flamepoint mo
physically appealing, which is an advantage over many
grangian based models where ad hoc assumptions for
flame thickness must be made. This leads to an accu
model for flamelet propagation; the results of the flamepo
match those of the fundamental solutions of the PDE~4!
almost exactly for the two spiral cases, Figs. 12 and 13. T
flamepoint model was then used to obtain results for
fractal Cantor dust case, Fig. 14.

Finally, we may contrast the anomalous decaying regim
in Burgers turbulence@1# for one-signed pulses, to th
anomalous burning regimes which takes the general form
equation~33! with z5$Dk ,H%. Even though they are differ
ent physical systems, the functional form of the energy de
law in the advection-diffusion system~see Eq. 3.15 in@1#! is
similar to ~33!; however, the dependence on the capacity
different, viz z5(12D)/(22D).

In the simplelinear diffusive decay in@3#, the functional
form for the decay of scalar variance,S(t,D), is similar to
~33! but with z5(D21)/2 for fractal or spiral fields; see Eq
~8! of @3#. But when normalized by the classical case for
single pulse (D50), we obtainS(t;D)/S(t;0);t2D. This is
the same dependence obtained for the nondimensiona
burning rate of flamelets,~Eqs. ~13! and ~17! with S(t;D)
[UB(t;Dk) and S(t;0)[UB(t;Dk50)5const), which is
described by a system ofnonlinear reaction-diffusion equa-
tions.

Thus, while it appears that the functional form of th
anomalous physical regimes takes the general form of
~33!, the exact dependence of the powerz on the initial field
geometry~characterized by its capacity,D, or its fractal di-
mension,H, or by the geometric ratioR), depends of the
specific physical regime of interest. Nevertheless, it has b
shown here that the nondimensionalized burning rate in
nonlinear reaction-diffusion flamelet regime, is similar to t
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nondimensionalized scalar decay rate in the linear diffus
regime, withz5D. ~Physical quantities here are nondime
sionalized by the same quantities for the classical case w
D50.) This last result is particularly interesting since t
process of scalar diffusion, collision and merging, whi
leaves behind a single pulse with a larger correlation len
than the originals, is so different to the propagation and c
lision of flamelets which happens almost instantaneously
n

en

th
l-
d

two flamelets ‘‘disappear’’ from the domain upon collisio
as the burning process is completed.
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